If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+13a+16=0
a = 1; b = 13; c = +16;
Δ = b2-4ac
Δ = 132-4·1·16
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{105}}{2*1}=\frac{-13-\sqrt{105}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{105}}{2*1}=\frac{-13+\sqrt{105}}{2} $
| 4a+4-a=12+a | | b-8=-10+2 | | -3x+11=-x+9 | | x-8+3-7=6-2x | | (x+4)/6=1 | | 6n^2-23n+20=0 | | 7w/6-12=156 | | p-1=4p-16 | | X=4-40y+100y^2 | | 6x+13/15=3x+5/5x-25=2x/5 | | -5a+3a=6-3a | | x2+2x-8/x2-2xприx=0.008 | | 25x^2+10=0 | | 7*9=(7*10)-(7*f) | | 5-7n+2n=3-6n+8 | | 7w/6-12=152 | | 5/5x-2=90 | | 15v/8+7=37 | | 11x=–13 | | (7a+3)+-a-5)=-16 | | 7+c-15=22/3 | | 6=-5x+4 | | -3=p-4p | | -16t^2+112t=192 | | 9u/2-7=20 | | 8r-6r=0 | | 10p-(3p-4)=4(p+1)=9 | | 23=9x+-6x | | 1+8n=-22 | | 4k-2k=-2 | | Y=10x2-2+x | | 6b+2=16+4b |